Multithreaded sparse matrix-matrix multiplication for many-core and GPU architectures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures

Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrixmatrix multiplication with a focus on performance portability across different high performance computing archite...

متن کامل

Automatically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures

Graphics processors are increasingly used in scientific applications due to their high computational power, which comes from hardware with multiple-level parallelism and memory hierarchy. Sparse matrix computations frequently arise in scientific applications, for example, when solving PDEs on unstructured grids. However, traditional sparse matrix algorithms are difficult to efficiently parallel...

متن کامل

Accelerating Sparse Matrix Vector Multiplication on Many-Core GPUs

Many-core GPUs provide high computing ability and substantial bandwidth; however, optimizing irregular applications like SpMV on GPUs becomes a difficult but meaningful task. In this paper, we propose a novel method to improve the performance of SpMV on GPUs. A new storage format called HYB-R is proposed to exploit GPU architecture more efficiently. The COO portion of the matrix is partitioned ...

متن کامل

Sparse Matrix-vector Multiplication on Nvidia Gpu

In this paper, we present our work on developing a new matrix format and a new sparse matrix-vector multiplication algorithm. The matrix format is HEC, which is a hybrid format. This matrix format is efficient for sparse matrix-vector multiplication and is friendly to preconditioner. Numerical experiments show that our sparse matrix-vector multiplication algorithm is efficient on

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Parallel Computing

سال: 2018

ISSN: 0167-8191

DOI: 10.1016/j.parco.2018.06.009